Mutants of Rhizobium tropici strain CIAT899 that do not induce chlorosis in plants.
نویسندگان
چکیده
Type B strains of Rhizobium tropici induce severe foliar chlorosis when applied at planting to seeds of symbiotic host and non-host dicotyledonous plants. A Tn5-induced mutant, designated CT4812, or R. tropici strain CIAT899 that was unable to induce chlorosis was isolated. Cloning and sequencing of the DNA flanking the transposon in CT4812 revealed that the Tn5 insertion is located in a gene similar to glnD, which encodes uridylyltransferase/uridylyl-removing enzyme in enteric bacteria. Two marker-exchange mutants with insertions in glnD also failed to induce chlorosis in bean (Phaseolus vulgaris) plants. The 5'-most insertion in glnD (in mutant strain ME330) abolished the ability of R. tropici to utilize nitrate as a sole carbon source, whereas a mutation in glnD further downstream (in mutant strain ME245) did not have an obvious effect on nitrate utilization. A gene similar to the Salmonella typhimurium virulence gene mviN overlaps the 3' end of the R. tropici glnD homologue. A mutation in mviN had no effect on the ability of CIAT899 to induce chlorosis in bean plants. Therefore the glnD homologue, but not mviN, appears to be required for induction of chlorosis in plants by R. tropici strain CIAT899. A high nitrogen: carbon ratio in the rhizosphere of bean plants also prevented R. tropici from inducing chlorosis in bean plants. Mutations in either the glnD homologue or mviN had no significant effect on root nodule formation or acetylene reduction activity. A mutation in mviN eliminated motility in R. tropici. The sequence data, the inability of the glnD mutant to utilize nitrate, and the role of the R. tropici glnD gene in chlorosis induction in plants, a process that is nitrogen regulated, suggest that glnD plays a role in nitrogen sensing in R. tropici as its homologues do in other organisms.
منابع مشابه
Foliar Chlorosis in Symbiotic Host and Nonhost Plants Induced by Rhizobium tropici Type B Strains.
Rhizobium tropici CIAT899 induced chlorosis in the leaves of its symbiotic hosts, common bean (Phaseolus vulgaris L.), siratro (Macroptilium atropurpureum Urb.), and Leucaena leucocephala (Lam.) de Wit. Chlorosis induction by strains CIAT899 and CT9005, an exopolysaccharide-deficient mutant of CIAT899, required carbon substrate. When the bacteria were added at planting in a solution of mannitol...
متن کاملGlutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance.
The isolation of rhizobial strains which exhibit an intrinsic tolerance to acidic conditions has been reported and has facilitated studies on the basic mechanisms underlying acid tolerance. Rhizobium tropici strain CIAT899 displays a high intrinsic tolerance to acidity and therefore was used in this work to study the molecular basis of bacterial responses to acid conditions and other environmen...
متن کاملA ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance.
Rhizobium tropici CIAT899 is highly tolerant to several environmental stresses and is a good competitor for nodule occupancy of common bean plants in acid soils. Random transposon mutagenesis was performed to identify novel genes of this strain involved in symbiosis and stress tolerance. Here, we present a genetic analysis of the locus disrupted by the Tn5 insertion in mutant 899-PV9, which lea...
متن کاملCharacterization of rhizobia isolates obtained from nodules of wild genotypes of common bean
This study aimed to evaluate the tolerance to salinity and temperature, the genetic diversity and the symbiotic efficiency of rhizobia isolates obtained from wild genotypes of common bean cultivated in soil samples from the States of Goiás, Minas Gerais and Paraná. The isolates were subjected to different NaCl concentrations (0%, 1%, 2%, 4% and 6%) at different temperatures (28°C, 33°C, 38°C, 4...
متن کاملNitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress.
Common bean plants inoculated with salt-tolerant Rhizobium tropici wild-type strain CIAT899 formed a more active symbiosis than did its decreased salt-tolerance (DST) mutant derivatives (HB8, HB10, HB12 and HB13). The mutants formed partially effective (HB10, HB12) or almost ineffective (HB8, HB13) nodules (Fix(d)) under non-saline conditions. The DST mutant formed nodules that accumulated more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 144 ( Pt 9) شماره
صفحات -
تاریخ انتشار 1998